Set-valued stochastic integral equations driven by martingales
نویسندگان
چکیده
منابع مشابه
Fuzzy set-valued stochastic Lebesgue integral
This paper studies Lebesgue integral of a fuzzy closed set-valued stochastic process with respect to the time t. Firstly, a progressively measurable fuzzy closed set-valued stochastic process is discussed and an almost everywhere problem in the former Aumann type Lebesgue integral of the level-set process is pointed out. Secondly, a new definition of the Lebesgue integral by decomposable closur...
متن کاملSet-Valued Stochastic Lebesgue Integral And Representation Theorems
In this paper, we shall firstly illustrate why we should introduce set-valued stochastic integrals, and then we shall discuss some properties of set-valued stochastic processes and the relation between a set-valued stochastic process and its selection set. After recalling the Aumann type definition of stochastic integral, we shall introduce a new definition of Lebesgue integral of a set-valued ...
متن کاملBackward stochastic partial differential equations driven by infinite dimensional martingales and applications
This paper studies first a result of existence and uniqueness of the solution to a backward stochastic differential equation driven by an infinite dimensional martingale. Then, we apply this result to find a unique solution to a backward stochastic partial differential equation in infinite dimensions. The filtration considered is an arbitrary rightcontinuous filtration, not necessarily the natu...
متن کاملApproximate Solutions of Set-Valued Stochastic Differential Equations
In this paper, we consider the problem of approximate solutions of set-valued stochastic differential equations. We firstly prove an inequality of set-valued Itô integrals, which is related to classical Itô isometry, and an inequality of set-valued Lebesgue integrals. Both of the inequalities play an important role to discuss set-valued stochastic differential equations. Then we mainly state th...
متن کاملStochastic Control Problems for Systems Driven by Normal Martingales
In this paper we study a class of stochastic control problems in which the control of the jump size is essential. Such a model is a generalized version for various applied problems ranging from optimal reinsurance selections for general insurance models to queueing theory. The main novel point of such a control problem is that by changing the jump size of the system, one essentially changes the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2012
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2012.04.042